Iraqi Laser Scientists Journal (ILSJ)/ <u>www.ilsj-online.org</u> Vol .1, Issue 2; Pp;12-21, 2018 ## Original article ## Effect of laser energy density on ZnO / α- Al2O3 of films grown by pulsed laser deposition Adawiya J. Haider ¹*, Afnan K. Yousf ¹, Ali K. Shakir ², Mohammad J. Haider ³, Amer B. Dheyab ⁴ Khaled M. Chahrour ⁵ Applied physics science Department /Laser Branch, University of Technology, Baghdad-Iraq 1. Nanotecnology and Advanced Materials Research Center University of Technology, Baghdad-Iraq 2 Electrical Engineering Department, University of Technology, Baghdad-Iraq 3 Ministry of Science and Technology, Baghdad, Iraq⁴. Nano-Optoelectronics research and technology laboratory, School Of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia⁵ *Corresponding author: 100081@uotechnology.edu.iq ## **Abstract** In this work, Pulsed Laser Deposition (PLD) was employed for preparation of the thin films of Zinc Oxide on Sapphire α - Al_2O_3 (0001). The effect of laser energy density on the structure and optical characterizations of the ZnO films have been studied by X-Ray diffraction (XRD), and Scanning Electron Microscopy (SEM). The results showed that crystalline and (002)-oriented ZnO films were obtained at laser fluence 0.8, 1.6, and 2.4 J/cm^2 and the optimized growth ZnO films were at substrate temperature of 400 $^{\circ}$ C. Optical transmission for all films was around 85-90% within the visible region of the spectrum. **Key words:** Pulsed-laser deposition, Zinc oxide thin films, Nanostructures, Nd: YAG Q-Switching (SHG). To cite this article: Adawiya J. Haider , Afnan K. Yousf , Ali K. Shakir , Khaled M. Chahrour, Amer B. Dheyab ; Effect of laser energy density on ZnO / α - Al2O3 of films grown by pulsed laser deposition ; Iraqi Laser Scientists Journal. Vol .1, Issue 2; Pp;12-21, 2018.